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Azimuthal rotation in the axisymmetric meridional flow 
due to an electric-current source 
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[Received 15 January 1982 and in revised form 20 July 1982) 

The steady laminar flow driven by the meridional electromagnetic force due to an 
electric-current point source on a plane is considered. The previous studies of the 
problem (Shercliff 1970; Shilova & Shcherbinin 1971) lead to a self-similar solution 
of the full Navier-Stokes equations analogous to the classic Landau jet. The solution 
breaks down when a critical electric-current magnitude is exceeded (Sozou 1971). In  
the present paper the converging meridional flow is shown to be unstable to an 
axisymmetric azimuthal perturbation when the corresponding critical Reynolds 
number is exceeded. The flow solution breakdown is eliminated for the coupled 
converging and rotating flow. The physical process is suggested by the draining-vortex 
formation. The fluid-flow equations are solved by the Galerkin method, using 
expansions in Gegenbauer functions. The mechanism sustaining the rotation is 
examined; the increased angular momentum in the fluid region is maintained by t)he 
balance of viscous diffusion upstream and convection to the axis of symmetry. The 
experimental evidence for vortex formation is considered. 

1. Introduction 
I n  the last decade some authors have studied the problem of an electrically 

conducting fluid flow due to an electric-current point source since this is a convenient 
model for the investigation of some high-current industrial processes (electrical arcs, 
electro-slag welding, etc.) and natural phenomena (lightning discharge in a conducting 
fluid, tornado). The fluid motion in these processes is driven by the rotational Lorentz 
force set up by a diverging current and its associated magnetic field. The problem 
appeared in the papers of Zhigulev (1960), Lundquist (1969), Shercliff (1970), Sozou 
(1971) and Shilova & Shcherbinin (1971). 

Further interest in the problem can be motivated by the fact that  the fluid flow 
due to an electric-current source is described by a class of exact solutions of the 
Navier-Stokes equations. The class was introduced by Landau (1944), Yatseyev 
(1950) and Squire (1951). These solutions correspond to the axisymmetric meridional 
flows with velocity fields inversely proportional to a spherical radius. Goldshtik (1960) 
added an azimuthal velocity and considered the potential vortex viscous flow above 
a rigid plane. Wu (1961) extended the class of exact solutions to  magnetohydro- 
dynamics with the meridional magnetic field inversely proportional to a spherical 
radius. A full formulation of the class of exact solutions in magnetohydrodynamics 
was given by Shcherbinin (1969). 

The solution obtained by Lundquist (1969) describes in the Stokes approximation 
the slow fluid flow due to an electric-current source on a plane. The flow converges 
along the plane and ascends along the axis of symmetry. A similar meridional flow 
is induced by a vortex line normal to  a rigid plane (Goldshtik 1960). Goldshtik’s 
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solution of the nonlincar problem shows that the axial velocity grows to infinity as 
the vortex line intensity approaches the finite value r(0) = 8v, where the parameter 
r(0) is defined by v+ = r(8)/rsin 8. A similar singularity has been found by Sozou 
(1971) in the flow induced by an electric-current source. .A numerical solution of the 
nonlinear equation governing the fluid flow leads to infinite axial velocity when a 
non-dimensional parameter S = ,uo 12/4n2pv2, reaches the value S, M 150. Here I is the 
magnitude of the total supplied electric current, p, the magnetic permeability, p the 
density, and v the kinematic viscosity. Narain & Uberoi ( 1  971) extended the problem 
for an arbitrary conical rigid boundary and showed that the values of S, increase 
as the cone angle 8, is decreased. So, for the case 8, = 90° (plane), S, M 150, but, for 
0, = 30°, S, E 1200. 

Different viewpoints were expressed regarding the unlimited growth of velocities 
in the flow generated by an  electric-current point source. Shercliff (1970) suggested 
that the fluid vorticity generated by rotational electromagnetic forces can be limited 
by viscous effects and by effects of flow-induced secondary electric currents. However, 
this balance cannot be achieved in an inviscid fluid model adopted by the author. 
Sozou & English (1972) dealt with a viscous-fluid model incorporating magnetic-field 
convection and found the same non-regularity of the solution a t  S = S,  if the fluid 
conductivity was finite. 

Sozou & Pickering (1976) attempted to improve the situation by restricting the 
fluid flow to a hemispherical container and abandoning the self-similar form of the 
solution. The numerical solution showed that the velocity grew faster than linearly 
with the parameter 8 ;  the maximum growth occurred on the axis of symmetry near 
the spherical boundary. The numerical results indicated a singularity of the axial 
velocity when a critical value of S was achieved. This value was even smaller than 
S, of the corresponding infinite-domain problem. 

Recently Atthey (1980) gave a numerical solution of the nonlinear problem of fluid 
flow in a hemispherical container due to the discharge from a finite electric-current 
source. The analysis of the results shows the velocity-field intensity growing slower 
than linearly with S. This is true except in the axial region near the spherical 
boundary where the axial velocity increases in much the same manner as in the case 
considered by Sozou & Pickering, yet at much greater magnitude of the parameter 
S ( -  lo5). Thus difficulties remain computing velocity fields at large magnitudes of 
an electric current diverging from a small source. 

I n  a review paper Moffatt (1978) concludes that the proposed solutions to the 
point-source problem contain internal inconsistencies that have yet to be fully 
resolved. MoBatt shows also that the mechanical work done in unit time by a 
rotational electromagnetic force can be limited only by viscous effects in a closed 
container . 

BojareviEs (1981 a ,  b) has considered the same problem where an electric current 
I ,  is supplied to  the point source by an isolated wire immersed in fluid along the axis 
of symmetry (figure 1 ) .  This situation models an immersed electrode in electro-slag 
welding when electric current flows to an axially symmetric lateral surface. I n  this 
case the flow direction is reversed. The flow diverging along the plane can be described 
by the class of exact solutions a t  practically any magnitude of the parameter S. The 
fluid flow is like an inviscid flow for S = lo6-lo9, except in the narrow viscous layers 
a t  the plane and at the current-supplying wire. The flow is described analytically with 
the use of matched asymptotic expansions for S -+ co . 

These results give rise to  a question: why is the flow direction crucial for the 
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FIGURE 1. The electric current discharge from a point source on a plane t? = b. The total current 
I = I ,  is supplied from the outside of fluid, or I = I ,  is supplied along an isolated wire on 0 = 0. 

solution Z I n  the present paper it will be shown that the converging flow is unstable 
to an azimuthal disturbance, and that it can exist only when coupled with azimuthal 
rotation. This approach is suggested by the papers of Smislov & Shcherbinin (1976), 
Craine & Weatherill (1980) and Millere, Sharamkin & Shcherbinin (1980), where it 
is shown that the azimuthal rotation resulting from the application of an axial 
magnetic field can slow down the meridional flow or even reverse it. The new feature, 
reported in the paper of Millere et al .  (1980), is the energy transfer from the meridional 
flow to the azimuthal rotation. This allows us to propose that a small azimuthal 
perturbation will be amplified by the intensive converging meridional flow in analogy 
with a draining-vortex formation. 

The theoretical consideration is motived by experiment (BojareviEs, Millere & 
Chaikovsky 1981) ; electric current is supplied to  a small water-cooled electrode, 
0 8  cm in diameter, in the centre of a free surface of mercury filling a hemispherical 
copper containiner, 36 cm in diameter, which serves as another electrode (see the 
photographs in figure 2) .  When the electric current I = I ,  is applied from above to 
the free surface, a converging flow is set up which closely resembles a flow drained 
to a sink. The observed flow for I1 >, 15 A is coupled with rotation similar to a 
draining vortex (figure 2 a ) .  There are no sufficient external azimuthal forces to drive 
the rotation in this axially symmetric situation, but a small forced perturbation can 
be produced through interaction of the radial electric current and the vertical 
component of the Earth’s magnetic field or the field of distant non-symmetric parts 
of the current-supplying wires. This perturbation field is about 0.5 G in magnitude, 
compared with the magnitude of maximum self-magnetic field, 500 G, for 1000 A 
input current. Rotation is not observed in the reversed flow when the electric current 
I = I2 is supplied from below to the free surface (figure 2 b ) ,  and even after artificial 
spin-up, the rotation soon dies out and there remains only the diverging radial flow 
along the free surface. 

The following theoretical analysis does not concern a perturbation growth in time 
or space, but involves sharp changes in a stationary flow increasing the Reynolds 
number R, (defined in $ 2 ) .  A perturbation is introduced in the form of a small 
stationary force f,, which provokes sharp velocity-field changes in the vicinity of the 
critical R, value. Moreover, the case f, = 0 differs essentially from the result obtained 
by decreasing the finite value f , + O .  This new solution includes an azimuthal 
rotational motion sustained by the converging meridional flow. A viscous mechanism 
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FIGURE 2.  Flow on the surface of mercury in a hemispherical container. (a )  If electric current 
I ,  = 1200 A is supplied from above, converging flow is coupled with rotation. ( b )  If electric current 
I ,  = 1200 A is supplied from below, diverging flow does not rotate. The surface is deformed in the 
centre, where fluid ascends. 
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supporting the intensive rotation is analysed in $ 5 .  A basic feature of the mechanism 
is an upstream viscous diffusion of the angular momentum. In $6 we discuss the 
relevance of the semi-infinite flow to a real bounded flow. 

2. Formulation of the problem 
The stationary motion of a viscous incompressible electrically conducting fluid is 

governed by the Navier-Stokes equations, which, after eliminating the pressure, take 

( 1 )  
the form 

, v . v = o .  (2) 

-pV x (V x V x V )  = -UPV x V x V x v + V  x (j x B), 

For small magnetic Reynolds number the magnetic field is approximately independent 
of fluid motion. Then a steady magnetic field B and an electric current density j in 
the fluid must satisfy the following equations: 

Vxj  = 0, (3) 

V x B = p o j ,  (4) 

V. j  = 0, (5) 

V.B=O.  (6) 

The radial electric current from a point source in the origin of spherical polar 
co-ordinates ( r ,  0, #) is given by the equation 

where a prime denotes the differentiation with respect to the variablep = cos 8. From 
(3) it follows that 

To specify the constants A ,  B consider the situation where a half-space 8 < &J is 
occupied by a conducting fluid. Then the constants in (8) differ in two cases: ( i )  if 
the electric current I = I ,  is supplied to the source along a line wire on 0 = n, then 
A = - 1/2n, B = 1/2n; (ii) if the electric current I = I2 is supplied along an isolated 
line wire immersed in the fluid on 8 = 0, then A = - l/%r, B = 0. 

The electromagnetic force resulting from the electric current’s self-magnetic field 
B, = poL(p)/r(l -pz)t contains only a @component, 

L ( p )  = I ( A p + B ) .  (8) 

(9) 

and drives a fluid flow either converging to the axis of symmetry (fes < 0) (’ in case 
(i)), or diverging (fee > 0) (in case (ii)). 

From dimensional analysis (Shcherbinin 1969; Sozou 1971) the velocity field 

is self-similar, and the stream function $ and the azimuthal velocity u+ take the forms 
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The previous investigations have shown two different flow situations: (i) the 
converging-flow solution exhibits a breakdown if the total supplied current I exceeds 
a certain critical value (SOZOU 1971); (ii) the diverging .flow smoothly evolves with 
increasing I ,  and develops thin viscous boundary layers separated by an inviscid flow 
region when I -+ co (BojareviEs 1981 a ,  b ) .  

In  the converging flow a small azimuthal disturbance may be amplified by the 
inviscid mechanism of vortex-line stretching (see Batohelor 1967, 55.2). For the 
purpose of investigating flow sensitivity to azimuthal disturbances, let us introduce 
a small azimuthal volume force, f, = fo+ e+, in such a way as to conserve the self-similar 
fluid-flow situation. Then a magnetic-field disturbance suitable for the experimental 
situation can be modelled in the class of exact solutions by an external field 

where k is a small constant proportional to  the perturbation. We specify further 
C = - 1 ,  D = 1 ,  so that the magnetic-force lines are para’bolas in a meridional plane 
with apexes on the axis 8 = n outside the fluid. Interaction of the magnetic field B, 
(12) and the radial electric current (7) gives the disturbing azimuthal force 

Note that (13) is the same for the cases (i) I = I1 or (ii) I = I , .  
Inserting ( l l ) ,  (A9) and (A10) (see appendix A) in the fluid-flow equations (A7) 

and (A 8), after some manipulations we get a system of ordinary differential 
equations; 

1 
gQ’ = (1  -p2)Q” - kA (Cp + D) ,  

where the Reynolds number R, is defined by 

We assume that the plane 8 = in is a free non-deformed fluid surface. This is not a 
realistic assumption for the high-current experimental situation shown in figure 2, 
but it is a good approximation for the moderate-R, flows actually considered here. 
Then boundary conditions for the viscous fluid-flow equations are 

g(0) = g”(0) = Q’(0) = 0 on the surface p = 0, (16) 

g(1) = Q(1) = ( l -pu”) ig”( l )  = 0 on the a,xis p = 1 .  (17) 

3. The numerical method 
The solution of the boundary-value problem (14)-( 17) is characterized by large 

changes in the functions g(p,  R,) and Q(p, R,) in the vicinity of the critical R, value. 
This imposes special requirements to approximation accuracy of a numerical solution. 
We have used a variant of the Galerkin method which ha8 an advantage in accuracy 
over finite-difference methods (Orszag 1971). This method can also be easily extended 
to non-self-similar problems involving spherical boundaries. 
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We assume that the functions g(p) and n(p)  can be expanded in converging series 
of the form: 00 

= I: a2n+1 Yzn+l(P), (18) 
n-1 

where Yn(,u) are the orthonormal Gegenbauer functions of the first kind of order n 
and of power -8. The functions Yn(,u) are the operator-E2 (see appendix A) 
eigenfunctions appearing in slow-flow linearized problems. Y n  are closely related to 
the Legendre functions Pn(,u): 9, = (Pn-,-P,)/(2n-1); for properties of 9, see 
Happel & Brenner (1965). The expansions in Gegenbauer functions have been 
successfully used by Dennis & Singh (1978) to  compute flow variables for the case 
of rotating spheres. 

Y,(p) are even or odd functions of p according as n is even or odd. Therefore, 
choosing odd functions in the expansion (18) and even in (19), we have fulfilled all 
the boundary conditions (16), (17). The function A p + B  in (14) may be defined as 
an antisymmetric function for p < 0, and C,u + D in (15) as a symmetric function for 
,u < 0. Then employing the orthogonality properties 

2/(2n+ 1) (m = n)  
dp = (" 

for m, n 2 2, these functions Ap + B and Cp + D can be expanded in the series of odd 
or even functions Y,(p) respectively. 

and bzn, we insert the expansions (18), (19) in the 
fluid-flow equations (14), (15). Then, multiplying (14) by .Y2z+l, (15) by Y2z and 
integrating in accordance with the orthogonality (20), we get a set of 2N nonlinear 
algebraic equations : 

To specify the coefficients 

N-1 N-m 

m-1 71-1 
I: I: [azn+l a,,,, ( -  2n(2n+ 1) M(21,2m, 2n) 

-((3*2m(2m+ 1)+2n(2n+1))L(2Z,2m,2n))+b~,b,,2L(2l,2m-l1,2n-l)] 
1 (21-1)(21+2) 1 

Rs 
- +- A(A+B-BP,z(O)),  (21) 42l+ 1) --%Z+I 41+1 

N-1 N-m 

m-1 n--1 
I: I: a,,+,b,,L(21-1,2m,2n-l) 

1 1 1 
= --b21-- kA(C + D - CY2i(O)), (22) R, 41-1 21(21-1) 

where l = 1, 2,. . . , N ;  N is a truncation number in the expansions (18), (19). In  
deriving (21), (22) there are assumed a posteriori the asymptotic relations for large 
n: a,,,, = O(b,,) = O(U,,-~), and the terms o(u,u,~+,) are not included in (211, (22). 
The integrals involving triple products of the Gegenbauer functions are evaluated 
after the manner of Dennis & Singh (1 978). Our slightly different expressions for L 
and M are to be found in appendix B. 

An iterative procedure is used to solve the set of equations (21), (22). At each 
iteration step the coefficients on the right-hand side of (21), (22) are determined using 
the most recently available information for the left-hand side. Each resulting solution 
member is denoted by at$$l or b$, and the new approximation is defined: 

(23 1 = Aai:$, + (1 -A) u ~ , + ~ ,  0 < A < 1 ,  
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FIGURE 3. Meridional streamlines rg /R ,  = const: (a )  Non-rotating flow: k = 0, R, = 42. 
(b) Rotating flow: k = 0.01, R, = 44. 

and analogously for b2%. The value of A must be decreased when the iteration 
procedure tends to diverge as R, number is increased towards its critical value. 

The results described in $4 correspond to the truncation number N = 20 in the 
expansions (18), (19). Moreover, the numerical results differ by less than 1 yo if N = 15 
for R, < 200 and k = 0.01. The test problems with k = 0 (without azimuthal 
rotation) show good agreement with the earlier works (Sozou 1971 ; BojareviEs 1981 a) .  

4. Results 
A slow fluid motion, when inertia effects are negligible, is governed by the linear 

Stokes equations. The linear solution to the problem (14)-(17) can be easily 
constructed by equating the left-hand sides of (21), (22) to zero. I n  this case, the 
functions g(p, R,, k )  and Q ( p ,  R,, k )  are determined independently, and g - R,, 
0 - kR,. We introduce the normalized functions 

1 1 
g n = - g ,  02,=-52 

R, kR, 
for the purpose of demonstrating a nonlinear evolution of the flow variables when 
the inertial effects are included. 

Consider the nonlinear fluid-flow problem (14)-(17) in the case where the electric 
current I = I ,  is supplied along a wire from the external side of the fluid surface 
(figure 1 ) .  Neglecting an azimuthal fluid motion as in the earlier works, we insert 
k = 0 in (15) and assume the trivial solution Q = 0. Then increasing R, we find that 
the axial velocity tends to infinity as R, + R, = 43 (the curve (a)  in figure 4). 
Streamlines of the flow in the vicinity of R, are shown in figure 3(a ) .  

Let us introduce the azimuthal perturbation (13). If we fix the small parameter 
k and increase R, this corresponds to the case of a Perturbation proportional to kIz ,  
e.g. the perturbation due to small spiralling asymmetry of the supplying wire. When 
the parameters Ic and R, are small, the normalized axial velocity g i ( l ) ,  and 
azimuthal velovity on the free surface Q,(O) are constant (figures 4, 5). On increasing 
R,, both meridional flow and azimuthal velocities grow (figures 4 ,5 ) .  Increased 
centrifugal forces near the free surface, where Q(p) is maximal, counteract the 
positive radial pressure gradient which corresponds to the converging flow along the 
plane 0 = in. This leads to decreased mcridional convection, and velocities a t  R, 
remain finite. (Strcamlines in the presence of the azimuthal perturbation are shown 
in figure 3 ( b ) . )  Moreover, the normalized axial velocity gA( 1 )  attains a maximum 
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FIGURE 4. The axial-velocity dependence upon R,: (a )  k = 0; ( b )  0001; (c) 0.005; ( d )  001. 
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FIGURE 5. The dependence upon R, of the azimuthal velocity on the free surface: (a )  k = 0.001 ; 
(b )  0005; (c) 0.01 ; ( d )  001 (diverging meridional flow for I = I z ) .  

and decreases further as R, is increased (the curves (b)-(d) in figure 4). The normalized 
azimuthal velocity on the free surface Q2,(0) varies in the same manner (the curves 
( b ) ,  ( c )  in figure 5 ) .  

The relative maximum magnitude of azimuthal velocity with increasing R, is small 
when k x 1, and is not of particular note ; this situation corresponds to the results 
of Smislov & Shcherbinin (1976), Craine & Weatherill (1980) and Millere et al. (1980). 
The numerical solution of the present problem shows that, on decreasing the 
perturbation parameter k ,  the maximum value of Q, increases rapidly in the vicinity 
of R, (figure 5 )  and gl, remains finite (figure 4). This result may be interpreted as 
the small azimuthal-motion perturbation is amplified by the intensive meridional 
flow. The question arises as to whether the function a, would grow infinitely if k + 0. 
Then an infinitesimal perturbation can be amplified to the level necessary for 
interaction with the meridional flow, thus limiting the axial velocity growth when 
R, -P R,. In  figure 6 is plotted the inverse to  n,(O) if k + 0 for various R,. If R, < K, 
the magnitude of l/Q, is finite a t  k = 0. But for R, 2 R ,  the numerical results suggest 
that l/Q, + 0 as Ic + 0. 
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FIQURE 6. The inverse of the azimuthal velocity when the perturbation parameter 
k+ 0 :  (a) R, = 40; (b )  42; (c) 45; (d )  50. 
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FIQURE 7. The inverse of the axial velocity when k + O :  (a) R, = 35; (b )  40; (c) 42; (d )  44; ( e )  50. 

Consider the limiting behaviour in more detail. At finite values of k the magnitude 
of gA(1) remains bounded on increasing R, 2 R, (figure 4), consequently the finite 
perturbation (13) eliminates the singularity of axial velocity. If we let k tend to zero 
along the solution induced by the azimuthal perturbation. the asymptotic behaviour 
of the numerical solution at R, suggests that fz, N constlk (figure 6), and owing 
to (24) fz - const. From figure 7, representing the inverse of axial velocity, it 
can be deduced that gA(1) may remain finite when k + 0. Note that the curvature 
a2(1/gh)/ak2 of the curves in figure 7 do not change sign on approaching R,, unlike 
those of the curves in figure 6. The closest computed results to the limit k: = 0 are 
represented in figure 8. But the limit k = 0 cannot be reached because then the 
angular momentum source in the symmetric flow is lost,. When k = 0 (15) can be 
integrated : 

a’ = const x exp s,’ s d t ,  (25)  

and for the boundary conditions (16), (17) i t  follows that Q = 0. Consequently, an 
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FIGURE 8. The inverse of the axial velocity when k + 0 for R, = 43 z R,. 
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FIGURE 9. The azimuthal velocity on the free surface for fixed magnitude of the 
disturbing force (13): (a) kR: = 1; ( b )  10; (c) 20; (d )  50. 

infinitesimal but non-zero azimuthal perturbation is necessary to avoid a singularity 
in the axial velocity if R, 2 R,. 

If we fix the magnitude of the perturbing force fo$ (13), proportional to  kRi, then 
the behaviour of the calculated solution is analogous to the previous case with k fixed. 
The normalized azimuthal velocity increases in proportion to R, when R, > R, 
(figure 9). If we let fo$ + 0, then l/Q, + 0 at R, 2 R,, analogously with the previous 
case. 

The increase of the velocity of rotation, - R,, is associated with converging flow. 
The flow that diverges along the free surface, generated by supplying the electric 
current I = I2 along an immersed wire on 8 = 0, does not amplify the rotation (the 
dashed curve in figure 5). A small perturbation of the form (13) does not change the 
diverging meridional flow significantly. 
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5. The mechanism sustaining the rotation 
A curious property of the converging flow described in 94 is that  of acquiring a 

relatively large rotation velocity as the result of a small azimuthal disturbance. This 
feature is notable in such well-known phenomena as a draining vortex or tornadoes. 
The large rotation velocities in these phenomena are commonly associated with 
vortex-line stretching in a converging flow, but viscous diffusion is neccssary to 
sustain the rotation without supplying angular momentum from the environment. 
The Burgers vortex is a model of the stretching-diffusion balance (see Batchelor 
1967), although it does not satisfy the viscous boundary conditions. 

The present solution of the fluid-flow equations can be used to analyse the 
mechanism sustaining the increased angular momentum in the converging flow due 
to an electric-current source. Consider the conservation of the angular momentum 
m, = prsin6'v4 with respect to the symmetry axis 6' =: 0. The use of the angular 
momentum instead of the appropriate vorticity component is justified by the 
physically simple integral conservation equation. The conservation equation can be 
derived from the vector product of the cylindrical radius vector rc erc (rc = r sin 0) 
and the azimuthal momentum equation. Using the divergent form of the momentum 
equations (Weir 1976), the scalar m, conservation equation is 

p div (vr sin ev,) = vp[div grad ( r  sin 6' c$) - 2 div (erc v6)] + r sin 6'f0$. (26) 

Integrating (26) over a control volume Vwith a surfacc S,,, we can use Gauss' theorem 
and write the equation in the form 

I. r r 

[grad(rs in8v~)-2v~erC] .dSo+ J rsinBfo$d V ,  (27) 
V 

which represents the balance of convection and diffusion of angular momentum across 
the surface So, and the modification due to electromagnetic forces. 

The control volume V may be specified between the coordinate surfaces: 
8 =  8, =in, 0 =  8, <in, r = r z ,  r =  r1 < r2.  Inserting in (27) the definition of 
velocities (lo), ( l l ) ,  (24), electromagnetic force (13), and itccounting for the boundary 
conditions (16) (m, is not carried across the free surface), the conservation equation 
can be writ,ten as 

where ,u = cos 8, and all the terms are reduced by the factor r2 - r,  owing to the flow 
self-similarity. The terms in (28) represent the rate of change of angular momentum 
m, = I(,u,p)~R(,u) in the control volume V .  The first term of the left-hand side is 
proportional to the convective transfer of m, out of the volume V across the surface 
r = r2 (since rl can be chosen to be zero), the second term is proportional to that across 
the surface 6' = 0,. On the right-hand side the first term represents the diffusive 
transfer of m, inside V across the surface r = r2 (or the frictional torque on the outer 
side of r = r2) ,  the second term represents the transfer across the surface 6' = 0,. The 
third term represents the perturbation by the electromagnetic force f o $ .  

Consider the angular momentum balance in fluid la.yers separated by surfaces 
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FIGIJRE 10. The angular-momentum conservation equation (28) terms us. the  variable control 
volume boundary,uu, = cos 8,. The control volume is sketched in the upper corner. The Curve number 
represents the term number from the left-hand side, negative-term values are shown with dashed 
lines. (a )  R, = 43, k = 0001 ; ( b )  1, 0.001. 

8 = const. I n  figure 10 are plotted the magnitudes of terms in the conservation 
equation (28) as functions of the variable control-volume boundary p,. In  the absence 
of strong meridional convection (R, = 1) the electromagnetic force moment (the curve 
5 in figure 10) is compensated by the negative frictional torque on the outer surfaces 
r = r2 and 8 = 8, (curves 3 and 4) or, in other words, by the diffusion of m, from the 
volume V .  The strong meridional convection directed to the axis of symmetry 
changes essentially the distribution of the terms in (28) to maintain the angular 
momentum balance. Figure 10(a) presents the magnitudes of terms in (28) for 
R, = 43 z R,. The electromagnetic force moment (curve 5), which has induced the 
azimuthal motion, is now much smaller in magnitude than the convectic angular 
momentum transfer in unit time through the surfaces r = r2 (curve 1) and 8 = 8, 
(curve 2). The viscous diffusion, also much greater in magnitude than the perturbation 
momentum, is directed against the converging meridional flow (curves 3 and 4). This 
also implies the positive torque acting on the outer surface 8 = 8, of the volume V .  
Thus, the increased magnitude of the angular momentum m, is sustained in the fluid 
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FIGURE 11. The normalized angular momentum Q,(,u) and azimuijhal velocity Qn(,u)/( 1 - , u Z ) i  at 
fixed r (dashed line) for k = 0001 : (a )  R, = 1 (both curves coincide in the scale of the figure); 
(b,  c) = 43. 

0'3L& 0.1 0.2 0.6 I 

cc 

FIGURE 12. The radial vorticity component RA(y) for k = 0001 : ( a )  R, = 1 ; ( b )  30; (c) 43. 

volume, where the self-similar flow exists, by the double process of diffusion upstream 
and convection backwards. The increase in angular momentum may be interpreted 
as a result of momentum growth in time due to action of the diffusion-convection 
mechanism : the momentum expelled by diffusion is returned by convection and the 
perturbation is added in this process. Of course, there must exist another fluid region 
where the angular momentum is transferred, e.g. by the viscous friction to  a rigid 
boundary. The corresponding flow in a closed rigid container is analysed by 
BojareviEs & Millere (1982), and the similar mechanism sustaining increased angular 
momentum in an axial region is found. 

There are also changes in the azimuthal velocity v$(,u). For the case of the strong 
converging meridional flow (R, = 43) the azimuthal velocity a t  a fixed radial distance 
T ,  v4 - n/(l -p2)t, attains its maximum near the axis p = 1, and exceeds the 
magnitude on the free surface p = 0 (figure 11). I n  the slow flow (R, = 1) the 
maximum azimuthal velocity is on the free surface (figure 11). 
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Vorticity components for the self-similar flow are of the form 

I n  the absence of rotation the magnitude of vorticity grows infinitely near the axis 
of symmetry for R, -+ R,, and the viscous diffusion in this case does not prevent the 
flow breakdown. The flow is unstable to an azimuthal perturbation; therefore the 
radial vorticity also attains a large magnitude near the axis of rotation (figure 12); 
but the increased viscous diffusion leads to limited vorticity growth. 

6. Concluding remarks 
There remains uncertainty as to whether the self-similar fluid-flow model may be 

related to a real bounded flow. An appropriate model for the investigation would be 
the fluid flow in a hemispherical container. Results of the computational study of the 
flow between concentric hemispherical electrodes are reported by Bojarevi6s & Millere 
(1982). The results reveal the significance of the ratio r l / r 2  of the inner to outer 
hemisphere radii ; for the small ratio v l / r 2  < 0.1, there forms a region of the increased 
rotation near the inner sphere where increased angular momentum is sustained. The 
flow in this region tends to  the self-similar flow if r l / r z  --t 0. 

Other experimental evidence can be found for the transition to rotation in 
converging axisymmetric flows when a critical Reynolds number is exceeded. 
Kawakubo et al. (1978) report formation of a vortex in a sink flow when the sink 
intensity exceeds a certain value. Torrance (1979) reports an azimuthal rotation of 
the laboratory plume above a localized heat source, though with non-axisymmetric 
oscillations. Atmospheric vortices (tornadoes) are associated with convective flows, 
and some relation with the above process may be suggested in their formation stage. 

Appendix A 

be described by the use of two scalar functions: 
I n  the axisymmetric situation the solenoidal stationary vector fields v, j, B can each 

where (q l , q z ,  4) is an orthogonal axisymmetric coordinate system with Lame 
coefficients HI, H,, H,. By the use of (4) the electric-current function +1 is related 
to the azimuthal magnetic field B$ induced by the meridional electric current: 

1 

PO 
llfl = -H,B$+const. 
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From (3) it  follows that 11., must satisfy the equation 
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The function 11.2 characterizes an external magnetic field which is not associated with 
a current in the fluid. $, is governed by the equation 

E2$2  = 0. (A 6) 

Substituting (Al)-(A3) in the fluid-flow equations ( l ) ,  we express them in the 
curvilinear coordinates 

H3(V+ x ( V H T ~  + H ; V ) E 2 $ -  H,v,VH;~ x V ( H 3 v & ) .  e4 + vE4$ 

= -& H ~ + ~ ( v H ; ~  x v+,) . ed ,  (A 7) 

(A 8) 

P 

1 

P 
V11. x V ( H 3  v ~ )  . e6 + uH3 E2H3v$ = - (V$,, x V$J . eq, 

where 

e l ,  e,, e3 are the unit vectors of the coordinate system. 
I n  the spherical polar coordinates ( r ,  8, $) the Lame coefficients are H ,  = 1, H ,  = r ,  

H3 = r sin 8. The velocity field is given by (10) ; the electric current and the external 
magnetic field from $2 can be related to the functions 

A p p e n d i x  B 
We define 

$1 = = Wp++B),  

11.2 = - k p , , I r ( C p + D ) .  

By the use of associated Legendre functions of the first kind, 

Pi(pU) = n(n+ 1) x n + l ( p ) / ( 1  -p")'> 

and the relation Y;+l(p)  = - Pn(p), Gegenbauer functions can be related to  spherical 
harmonics 

Spherical harmonics, their integrals and other related results are described by 
Varshalovich, Moskalev & Hersonsky (1975). The above integrals can be evaluated : 

(B 4) 
n(n+l ) -Z(Z+l) -m(m+l)  

2Z(Z+ l)m(m+ 1 )  
L(Z, m, n) = 
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where 

l ( l+ l )[n(n+ 1)-Z(l+ l)+m(m+ l)]+m(m+ l)[n(n+ i ) + Z ( Z +  1)-m(m+ i)] 
2l(Z+ l)m(m+ i)n(n+ 1 )  

A =  

and 3-j symbols (i :) are equal to zero unless IE-ml< n < l+m.  We compute 

them numerically by the use of recurrence relations and various symmetries which 
help to avoid error summation and ensure a test. All the necessary properties of the 
3-j symbols can be found in Varshalovich et al. 
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